Closing Tues: HW 10.1

Closing Thurs: HW 10.2

Exam 1 will be returned Tues

Entry Task (directly from HW)

Consider $P(t) = 33t + 6t^2 - t^3$.

For what value of t is P(t) increasing? (You'll need a calculator to get some decimals). Also do the full $1^{\rm st}$ deriv. number line analysis that we did in lecture on Friday.

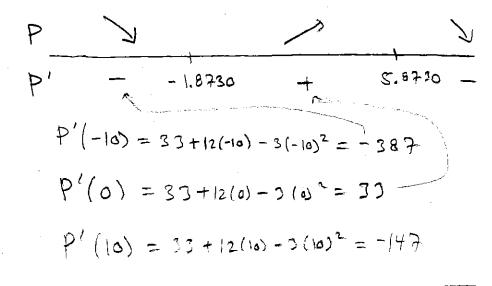
$$P'(t) = 33 + 12t - 3t^{2} = 0$$

$$11 + 4t - t^{2} = 0$$

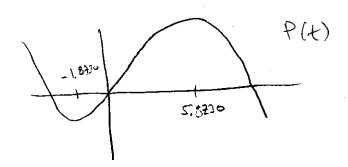
$$t = -\frac{4 \pm \sqrt{4^{2} - 4(-1)(11)}}{2(-1)}$$

$$= -\frac{4 \pm \sqrt{16 + 44}}{-2} = \frac{(-4 \pm \sqrt{60})}{-2}$$

$$= -1.8730 \quad \text{on} \quad 5.8730$$

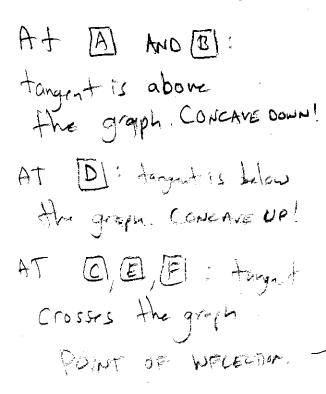


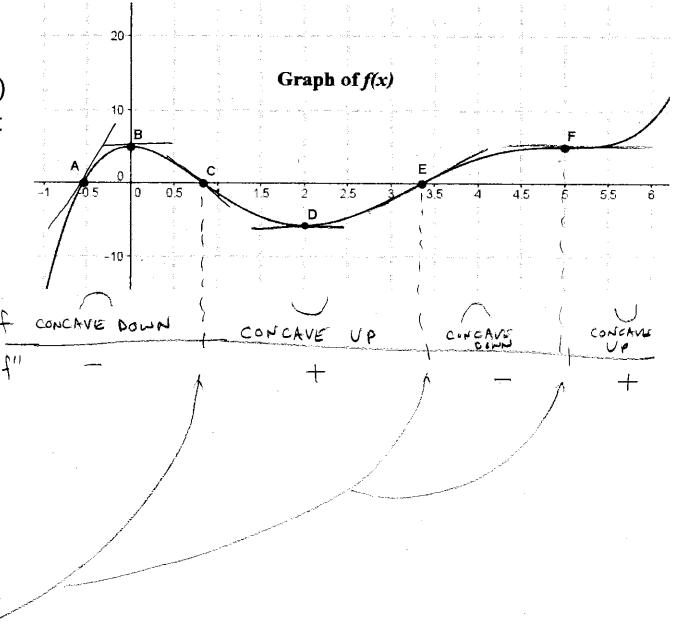
LOCAL MAX : AT X=5,8730 LOCAL MIN : AT X=-1,8700



10.2 Concavity

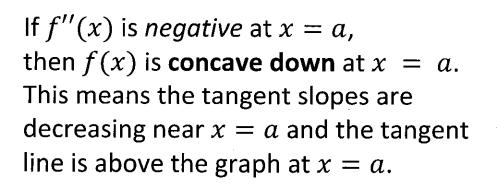
Consider the given y = f(x) graph (same graph from last lecture). Draw the tangent line at each point. Is the tangent line above or below the curve near that point?





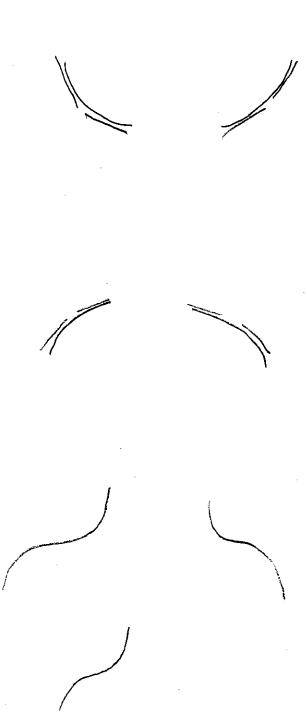
Terminology:

If f''(x) is positive at x = a, then f(x) is **concave up** at x = a. This means the tangent slopes are increasing near x = a and the tangent line is below the graph at x = a.



If f''(x) = 0 at x = a, then we say x = a is a **possible point of inflection**.

A *point of inflection* is any point where the concavity *changes*.



Example:

Let
$$f(x) = \frac{1}{2}x^4 - 3x^2 + 5x + 1$$

Find all intervals when f(x) is concave up and find all inflection points.

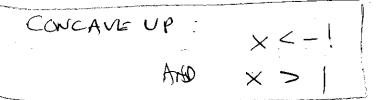
$$f'(x) = 2x^3 - 6x + 5$$

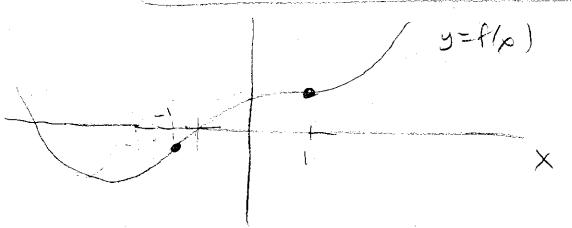
 $f''(x) = 6x^2 - 6 \stackrel{?}{=} 0$
 $\Rightarrow 6x^2 = 6$
 $\Rightarrow x^2 = 1$
 $\Rightarrow x = \pm 1$

$$f''(-2) = 6(-2)^2 - 6 = 24 - 6 = 18$$

$$f''(0) = 6(0)^2 - 6 = 24 - 6 = 18$$

$$f''(2) = 6(2)^2 - 6 = 24 - 6 = 18$$





Summary of 1st and 2nd deriv. facts

f(x)	f'(x)	f''(x)
horiz. tangent	zero	
increasing	positive	
decreasing	negative	,
possible inflection	hor. tangent	zero
concave up	increasing	positive
concave down	decreasing	negative

1st Deriv Analysis: (to find critical points, increasing, decreasing, local max/min, h.p.o.i)

Step 1: Critical Points

Find f'(x) and solve f'(x) = 0.

Step 2: Draw number line. Between critical points, pick values of x and plug into f'(x) to see if it is positive or negative.

Step 3: Make appropriate conclusions.

2st Deriv Analysis: (to find inflection points, concave up/down)

Step 1: Possible Inflection Points Find f''(x) and solve f''(x) = 0.

Step 2: Draw number line. Between possible infection points, pick values of x and plug into f''(x) to see if it is positive or negative.

Step 3: Make appropriate conclusions.

Example:

Let $g(x) = x^3$.

Find all local optima and points of inflection, then sketch the graph.

$$g'(x) = 3 \times 2 \stackrel{?}{=} 0 \Rightarrow x = 0$$

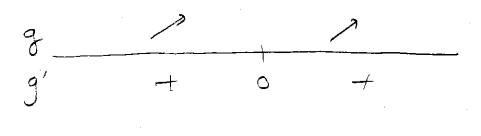
For $x < 0$: $g'(-1) = 3(-1)^2 = 3$
For $x > 0$: $g'(1) = 3(0^2 = 3)$

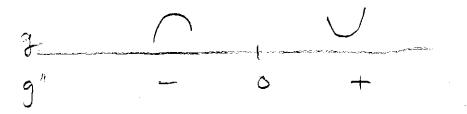
2nd Deriv. Analyso

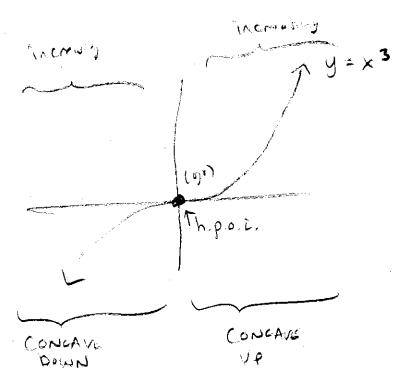
$$g''(x) = 6x \stackrel{?}{=} 0 = 1 \times = 6$$

For $\times < 0 : g''(-1) = 6(-1) = -6$
For $\times > 0 : g''(1) = 6(1) = 6$

NO LOCAL OPTIMA!







Example: Let $TC(q) = 5000q^2 + 125000$ dollars for producing q things.

Recall: Overall average cost per item is given by

$$AC(q) = \frac{TC(q)}{q} = \frac{5000q^2 + 125000}{q}$$

Analyze AC(q).

(What does it look like?, what are relative max/min? etc....)

Simplify!
$$\frac{5000q^2}{q} + \frac{125000}{q}$$
 $AC(q) = \frac{9}{q} + \frac{125000}{q}$
 $AC(q) = 5000q + 125000q^2$
 $AC'(q) = 5000 - 125000q^2 = 0$
 $xq = \frac{5000q^2}{q^2} - \frac{125000}{q^2} = 0$
 $5000q^2 - \frac{125000}{q^2} = 0$
 $5000q^2 = \frac{125000}{q^2} = 0$
 $q = 25$
 $q = \pm 5$

